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Abstract 

This paper investigates the exponential triplet prob- 
ability distribution and the corresponding expecta- 
tion values that incorporate structural information 
of an a priori known part of the electron density. The 
expectation values improve from the Cochran expec- 
tation values (no structural information) to the true 
values (all information known). Combination of the 
expectation values gives an estimation formula for 
triplets with structural information. The validity of 
the resulting estimated triplets is tested with mean 
absolute errors and correlation coefficients against 
the true values of the triplets. The single and double 
Patterson functions may serve to find the structural 
information ab initio. Some problems are mentioned 
that mean application of the formulae to standard 
structure-solution methods is still difficult. The 
development of more general formulae for other 
multiplets and higher Patterson functions is 
expected. 

1. Introduction 

The use of an a priori uniform independent distribu- 
tion of atoms in the unit cell, which is an assumption 
in the derivation of the well known exponentional 
multiplet distributions (Hauptman, 1976), seems to 
contrast with the structural information known from 
the Patterson function (Patterson, 1935). From the 
Patterson function, triplets may be estimated in a 
completely different way (Hauptman & Karle, 1962; 
Kroon & Krabbendam, 1970). Various kinds of a 
priori information may be used in the derivation of 
the exponential triplet probability distribution 
(Heinerman, 1977). In this paper, the known frag- 
ment has a fixed orientation and all other atoms are 
considered to be randomly distributed. The connec- 
tion with Lagrange multipliers (Kronenburg, Peschar 
& Schenk, 1991) is stressed. 

In the resulting expectation values, the peaks of 
the single and double Patterson functions (Sayre, 
1953) of the known fragment are present. This sug- 
gests the possibility of combining Patterson functions 
with probabilistic methods. 
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2. Estimation of triplets with structural information 

The irreducible cluster integrals for structure factors 
in space group P1 were derived in an earlier paper 
(Kronenburg et al., 1991). It was demonstrated there 
that the multiplet distributions (Hauptman, 1976) 
follow from the first irreducible cluster integral el, 
where interatomic correlations between pairs of 
atoms are taken into account. The second irreducible 
cluster integral e2 accounts for correlations between 
triples of atoms. It contributes an extra exponential 
term to the exponential triplet probability distribu- 
tion and changes the values of the Lagrange multi- 
pliers. 

The structure factors F,~ in space group P1 are 
given by 

N 

F , =  Z f~exp(ik, ' r~),  (1) 
v = l  

where the f~ are the scattering factors, the r~ are the 
atomic positions in the unit cell, N is the total 
number of atoms in the unit cell and the k ,  are the 
reciprocal vectors. For a single crystal, the k ,  are 
restricted to the reciprocal point lattice: 

k~ C 27r(hla* + h2b* + h3c*), (2) 

where hl,...,h3 a r e  integers and a* .... ,c* are the 
reciprocal-unit-cell vectors. The or, values are the 
power sums over the scattering factors: 

N 

or, = Z f~ .  (3) 
v = l  

The normalized structure factors may be introduced 
by substituting F ,  = o-~/2 E,.  

Evaluation of formula (5.2) in the paper by 
Kronenburg et al. (1991), with n~,s now nine indices 
[/z E 1...3 is the index over the three reciprocal 
vectors that form the triplet and s E 1...3 is the 
index over a triple of atoms in the known part of the 
structure], yields the second irreducible cluster 
integral. This contributes an extra term in the 
exponential triplet probability distribution [with p. 
and /z '  elements of (1...3), /.t ;~/z', k~ + k2 + k3 = 0, 

Acta Crystallographica Section A 
ISSN 0108-7673 ©1993 



M. J. KRONENBURG 873 

and TI(2X) = X]: 

P(OtilF,~l°bs,k,~) 

oc exp (2flxfl2fl2 F1F2F3] °b~ 

x {tr3cosf,  + 2~'.2f,,f,,f,~,,~,~ 

x cos[ i f , -  k~'(r~- r~)-  k~,,'(ra - r~)]} ) ,  (4) 

where the triple summation over v, r and h is over 
the triangles of the Nknown atoms of the known part 
of the structure. IF~,I °bs are the observed diffraction 
magnitudes and ~t = arg(Fl) + arg(F2) + arg(F3) is 
the triplet-phase-sum random variable. For the 
number of known atoms, 0 _< Nknow~ --< N. Following 
the derivation (Kronenburg et al., 1991) of the 
Lagrange multipliers fl~,: 

~ p  = {O" 2 ÷ ~'.~f~f~cos[k~ • (r~ - r~)]} - l ,  (5) 
V-#K 

where the double summation over v and K is over the 
pairs of the known part of the structure. The result 
in the paper by Heinerman (1977) for a single known 
group with known orientation is equivalent. Since 
the expressions contain only interatomic vectors, the 
choice of origin is arbitrary. This is in accordance 
with the fact that the triplet Ot is invariant under 
origin translation. 

The interatomic vectors in (5) must also be present 
in (4). This means that triangles of interatomic 
vectors should be known; interatomic vectors that 
are not correlated have no effect on the exponential 
triplet distribution. This also follows from the 
irreducible cluster integrals (Kronenburg et al., 
1991). How these triangles are to be found is a 
different question and is discussed in the last section. 
When a group of Nknow~ positions of atoms is 
known, all pairs and triangles of atoms may be 
summed separately; they are correlated anyway. 

The expectation values (cos ~Pt) and (sin ~t) follow 
from (4): 

(cos ~,) = .,/, (2B,,82B31FIF2F31 °b, 

/o'~ + Z Y. Zf~f . f .  x 
t ~ K # A  

x cos[k~ • (rK- rv) + k~,, • (rA- rv)]} ),  (6) 
/ 

(sin ~O,) = yl (2fllfl2fl3lFiF2F3l °bs 
\ 

x {Z y~ Z L f . L  
v ~ e K ~ A  

x sin[k~" ( r~-r~)+ k~,. ( r , - r~) ]}  ) ,  (7) 

where T~(x)= I~(x)/Io(x), the I~(x) are the modified 
Bessel functions and the/3,, are given by (5). 

Using expectation values (6) and (7), the following 
estimations of the triplets result: 

@fit= arg((cos ~,) + i(sin @,)) (8) 

There are two important special cases: the case where 
no structural information is known and the case 
where all structural information is known. In the . . . . . . . . . . . . . . . . . . . . . .  
case of the triplet invariant, this structural informa- 
tion consists only of triangles of interatomic vectors. 

When no structural information is known, (5) 
reduces to fl~, = o-21 and (4) reduces to the Cochran 
result, with 2tratrE3[F1FEF3 °bscos ¢t/in the exponent. 
In this case, (6) reduces to the Cochran expectation 
value (cos~t)'-Tl(2tr3tr23[F1FEF3[ °bs) and (7) re- 
duces to (sinff,)= 0. It follows that, in this case, (8) 
reduces to ~O~ t =  0; this also follows from the 
Cochran distribution, which always has its maximum 
at ~t = 0. 

When all structural information is known, (5) 
reduces to fl~=([F~[true) -2 and, with [Fjzl true= 
levi °bs, (4) reduces to 2cos(@t-@t, ~ )  in the 
exponent. In this case, (6) reduces to (cos@,) 
=yl(2cosOtt rue) and (7) reduces to (sin@,)= 
1,1(2 sin otr~¢). It follows that, in this case, (8) reduces 
to ~07 t-- ~r~.  

3. Test results and conclusions 

In order to verify the validity of the expectation 
values (6) and (7) and of the estimated values (8), 
some random structures were generated. The total 
number of atoms of these random structures is speci- 
fied by N and an a priori known part of Nknown 
atoms was selected. The number of terms in the 
double summation of (5) thus becomes 2 (Nk.~_) and 
the number of terms in the triple summation of (4) 
becomes 6 ~uk-7"), where (N~.~y.) is the number of 
pairs and (,v~.~w°) is the number of triangles in the 
known part. The factors two and six result from the 
numbers of (combinations of) interatomic vectors 
present in a pair and in a triangle, respectively. 

In Table 1, the mean absolute errors and the 
correlation coefficients are given for true and 
expected cosine (Karle, 1972) and sine values of the 
triplets and for the true and estimated triplet values 
for a random structure with a varying number of 
known atoms and varying numbers of strongest trip- 
lets. The mean absolute error A is a measure of the 
mean distance of the data points (see the figures) 
from the linear identity line. This means that A 
decreases when the expectation values of the triplets 
are more accurate. The correlation coefficient/" is a 
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Table 1. Comparison of  true triplets with estimated triplets for total number of  atoms N = 100 with different 
numbers of  atoms Nk~ow. included in expressions (6), (7) and (8) 

# T  is the number  o f  strongest triplets included, Tm~, is the underlimit  o f  the triple p roduc t  IE~E~EaI/N ~/~, d = Ix - yl are the mean 
absolute errors ands F = x(~ - ~) [ (3~ - 7x-2)~ --~ - ~ ) ] -  ~/2 are the correlat ion coefficients, where the x are the true values and the y the 
expectation values or  estimated values. 

# T  = 50, Tmi n = 0.682 # T  = 200, Tmi n = 0.516 

0 0.338 -0.123 0.417 0.118 
5 0.337 -0.110 0.498 0.214 0.639 0.217 0.417 0.115 0.560 0.046 0.839 -0.005 

10 0.327 0.062 0.501 0.115 0.644 0.117 0.412 0.171 0.569 0.005 0.859 0.041 
15 0.350 0.009 0.475 0.323 0.658 0.280 0.408 0.155 0.551 0.174 0.841 0.219 
20 0.375 0.053 0.447 0.447 0.696 0.306 0.403 0.223 0.498 0.362 0.803 0.324 
30 0.361 0.318 0.385 0.599 0.616 0.608 0.408 0.346 0.438 0.530 0.821 0.413 
40 0.363 0.552 0.372 0.675 0.617 0.708 0.338 0.593 0.413 0.602 0.749 0.495 
50 0.291 0.560 0.344 0.736 0.547 0.712 0.304 0.687 0.368 0.702 0.664 0.584 
70 0.220 0.701 0.226 0.880 0.327 0.879 0.233 0.837 0.250 0.866 0.409 0.796 

100 0.187 0.989 0.094 0.995 0.059 0.997 0.170 0.994 0.110 0.996 0.058 0.998 

# T  = 500, T m i  n -~-  0.423 # T  = 2000, T m i n  = 0.300 

0 0.470 0.158 0.532 0.113 
5 0.470 0.149 0.584 0.072 0.954 0.011 0.532 0.116 0.603 0.035 1.088 0.021 

10 0.466 0.193 0.584 0.062 0.961 0.047 0.528 0.153 0.602 0.059 1.090 0.055 
15 0.467 0.153 0.573 0.143 0.978 0.100 0.523 0.183 0.593 0.134 1.089 0.119 
20 0.447 0.310 0.533 0.319 0.925 0.226 0.513 0.261 0.572 0.249 1.077 0.181 
30 0.428 0.400 0.475 0.491 0.941 0.307 0.488 0.364 0.527 0.405 1.071 0.282 
40 0.363 0.596 0.422 0.600 0.796 0.492 0.431 0.536 0.466 0.547 0.936 0.430 
50 0.327 0.682 0.372 0.691 0.724 0.559 0.383 0.647 0.421 0.632 0.881 0.480 
70 0.253 0.828 0.260 0.859 0.444 0.795 0.289 0.815 0.303 0.816 0.612 0.642 

100 0.159 0.994 0.121 0.996 0.059 0.998 0.153 0.995 0.128 0.996 0.061 0.999 

measure of the spread of the data points along the 
identity line. This means that F increases when pos- 
itive and negative triples are better distinguished by 
the expectation values. In general, both d and F are 
useful for comparison of expectation values with 
actual values. When the data points are all on the 
identity line (perfect correlation), then /I = 0 and F 
= 1 unless all data points are equal. 
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N_known : 0 (Cochran) 

. . . .  I . . . .  I . . . .  ! . . . .  
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" . :  , : : : ,  'i . . . . . .  " ~:,...:, "~.: "~..:;~.j~ ..:~.." . . . . . .~'~.;.~.g:t~.'~.r6 ~ ~.g'. . . . . .  

- 1  0 . . . .  , . . . .  I . . . .  i . . . .  
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cos (~) --> 

Fig. 1. Equat ion  (6) calculated f rom r andom structure, N = 100 
and Nk . . . .  = 0 (Cochran  result, see text and Table l), 2000 
strongest triplets. 

For Nknow n = 0 ,  the expectation values and esti- 
mations correspond to the Cochran (1955) 
expression. 

In Table 1, the $~st values show a continuously 
increasing value of the correlation coefficient F with 
increasing a priori information. From this it is con- 
cluded that the ¢~st values (8) incorporate the a priori 
information of Nknown atoms well. The mean abso- 
lute error A only decreases when already most a 
priori information is present. This means that /1 is 
not a good measure for indicating the correctness of 
triplet values where a priori information is con- 
cerned. 

The figures show the true and expected or esti- 
mated values of an N = 100 atoms random structure, 
with a varying number of Nk . . . .  known atoms. 

Fig. 1 gives the expected and true cosines of the 
triplet values when Nk,ow, = 0, which yields the 
Cochran result. Expected and true sines of the triplet 
values for Nk,ow, = 0 would yield all data points on 
the x axis. This is also the case for estimated and true 
triplet values from (8). 

Figs. 2, 3 and 4 give the results of (6), (7) and (8), 
respectively, for the same 100-atom random struc- 
ture, but with N k . o w  . = 40 known atoms. In contrast 
with the cosines in Fig. 2, the sines in Fig. 3 give a 
more or less symmetric distribution of data points. 

Combination of Figs. 2 and 3 with (8) gives Fig. 4. 
Although most data points in Fig. 4 tend towards 
the identity line, some triplets are still wrongly esti- 
mated. This means that incorporation of partial a 
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p r i o r i  i n f o r m a t i o n  does  no t  gua ran t ee  i m p r o v e m e n t  
o f  all es t imat ions ,  bu t  only an  i m p r o v e m e n t  ave raged  
over  m a n y  es t imat ions .  C o m b i n a t i o n  o f  the in fo rma-  
t ion o f  Figs. 2 a n d  3 gives a bet ter  cor re la t ion  in Fig. 
4. Also,  the fo rm o f  the yz funct ions  in (6) a n d  (7) is 
reflected in Figs. 2 a n d  3 a n d  no t  in Fig. 4. 

W h e n  the posi t ions  o f  all a t o m s  are  k n o w n  (Nk~own 
= 100), Fig. 5 shows the f o r m  o f  the 7] func t ion  in 
(6). The  figure for  the sine values is similar.  C o m -  
b ina t ion  o f  cosine a n d  sine values with (8) gives Fig. 
6. The  f luc tua t ion  also fol lows f r o m  the 3'~ funct ions  
in (6) a n d  (7). This  f luc tuat ion,  however ,  is very 
small  a n d  indicates  tha t  the change  o f  the combina -  
t ion o f  (6), (7) a n d  (8) f r o m  statist ical  to exact  

identit ies is tenable.  W h e n  all s t ruc tura l  i n f o r m a t i o n  
concern ing  the in t e ra tomic  t r iangles  o f  the comple te  
s t ruc ture  is present ,  the statist ical  indenti t ies  reduce  
to a lmos t  exact  identities.  

4. Connection with Pa t t e r sons  f u n c t i o n s  

In the preceding  sections a n d  in the figures, the a 
p r i o r i  i n f o r m a t i o n  was  ca lcula ted  f r o m  a pa r t  o f  a 
r a n d o m l y  genera ted  s t ructure .  In this section, the 
Pa t t e r son  func t ions  are cons idered  for  f inding a b  
i n i t i o  the a p p r o p r i a t e  s t ruc tura l  i n f o r m a t i o n  for  
improv ing  es t imat ions  o f  tr iplet  invar iants .  The  
single Pa t t e r son  funct ion ,  which can be c o m p u t e d  
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Fig. 2. Equation (6) calculated from random structure, N = 100 
and Nk . . . .  = 40 (see text and Table 1), 2000 strongest triplets. 
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Fig. 4. Equation (8) calculated from random structure, N = 100 
and Nk . . . .  = 40 (see text and Table 1), 2000 strongest triplets. 
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Fig. 3. Equation (7) calculated from random structure, N = 100 
and Nk . . . .  = 40 (see text and Table I), 2000 strongest triplets• 
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Fig. 5. Equation (6) calculated from random structure, N = 100 
and Ark . . . .  = 100 (see text and Table 1), 2000 strongest triplets. 
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from observed magnitudes only and may be con- 
sidered as a priori information, contains (possibly 
overlapping) peaks of interatomic vectors of the 
complete true structure. However, in the equations 
of the preceding sections, only interatomic vectors of 
triangles of the known part of the structure are to be 
substituted. These triangles are not known a priori 
and involve the true double Patterson function, 
which can only be computed when the true triplet 
values are known. The double summation in (5) is 
also a summation over the peaks in the single 
Patterson function of the known part of the structure 
and the triple summation in (4), (6) and (7) is also a 
summation over the peaks in the double Patterson 
function of the known part of the structure. In the 
following, the single and double Patterson functions 
are considered in connection with the exponential 
triplet probability distribution (4), the corresponding 
expectation values, (6) and (7), and the estimated 
triplets, (8). The following single Patterson function 
is normalized on the height of the Patterson peaks: 

M 

p~(u)=[1/(M+ 1)] Z (IF~,l°bS)2exp(--ik~,'U), (9) 
/ . * = 0  

where M is the number of reflections taken into 
account. For /z = 0, ko = 0 and F0 = trl, by defi- 
nition. At the origin u = 0, a peak of height tr2 is 
always present. 

The single Patterson function does not fully 
indicate which pairs of interatomic distances form 
triangles. The (~ ) [ (~ ) -  1] possible combinations of 
pairs of interatomic vectors contain only 2(~') pairs 
that actually form triangles in the true structure. The 
overlap of peaks in the single Patterson function may 
be an additional difficulty when finding the unique 
set of triangles. 

N_known = 100. 

3 0  "1 . . . .  ' . . . .  I . . . .  ' . . . .  I . . . .  ' . . . .  I . . . .  i . . . .  I . . . .  ' . . . .  I . . . .  ' . . . .  1]. 

~0 / /  
10 

O0 

-20~ / 

/ '  

-30 ~I .... I .... I .... t .... I .... , .... I .... , .... l .... , .... I .... i,,, 

- 3 0  -20 I 0 0 0  1 0  P 0  3 0  

Fig. 6. Equation (8) calculated from random structure, N = 100 
and NK ... .  = 100 (see text and Table 1), 2000 strongest triplets. 

The double Patterson function p 2 ( U , V )  (Sayre, 
1953), which is a function of two interatomic vectors 
u and v and which is normalized on peak heights, has 
the following form (with kg, + k~,, + kg,; = 0 for each 
triplet t): 

T 

p2(u,v) = [1/(T + 1)] 2 ° b s  

t = 0  

xexp [i(~bt- k m ' u  - k~,,,.v)], (1'0) 

where T is the number of triplets taken into account. 
The order of the three indices /zt, /z~ and /z;' that 
form the triplet is arbitrary because u and u - v form 
the same triangle. Again, for t = 0,/.t, =/x;  = #',' = 0 
and F0 = try, by definition. At the origin u = v = 0, 
there is always a peak of height tr3. Because, for 
triplets, k~,, ~ 0, k~,; # 0 and k~,, # 0, the sections u 
= 0, v = 0 and u = v cannot contain significant peaks 
when the triplet values ~b, have the correct values. 

The number of triplets T is the total number of 
triplets in the data set of M reflections. 

For each triangle in the actual structure, six peaks 
in the double Patterson function are present. These 
peaks are (u,v), (v,u), (-u,v-u), (v-u,-u), 
( -  v,u - v) and (u - v , -  v). 

When such a combination of peaks is identified, 
they may be substituted directly into (6) and (7). 
There may be overlap in the double Patterson func- 
tion because of more equally oriented equal tri- 
angles in the actual structure. Because of the form of 
expressions (6) and (7), the peak height can, 
nevertheless, be substituted in these expressions as a 
single peak f~fKfa. This may be an important obser- 
vation for use of the Patterson functions with these 
formulae. It means that overlap is not an obstacle for 
application of the double Patterson function to these 
expressions. 

For computation of the double Patterson function 
(10), some values for the triplets ~b, that are not 
known a priori must be substituted. Some starting 
point is needed, in which only the observed 
structure-factor magnitudes are present. In earlier 
work (Hauptman & Karle, 1962), the single 
Patterson function was used to estimate triplet 
values. The single Patterson function can be com- 
puted from observed structure-factor magnitudes 
only by (9), The basic assumption for this procedure 
is the following approximation. 

p2(u,v) -- cr3o~ ~[p~(u)p~(v)p~(u - v)] ~/2. (11) 

The sections u = 0, v = 0 and u = v of this estimate 
of p2(u,v) contain the single Patterson function. As 
mentioned, these sections are zero in the double 
Patterson function with only triplets (10) and should 
be made zero explicitly after computation of (11). 

From this first estimated double Patterson func- 
tion, a number of highest peaks may be selected 
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excluding the three sections u = 0, v = 0 and u = v as 
mentioned. Some problems, however, need further 
attention. 

The identification of peaks in the (estimated) 
double Patterson function may be executed in several 
ways. Using more strong triplets results in more 
reliably identified peaks. As mentioned, all triplets 
may be included in the double Patterson function 
(10). The number of identified peaks is determined 
by some criterion in the identification method, such 
as height and sharpness of the peak. This criterion 
should be strengthened as more peaks are identified, 
leading to better estimated triplets. 

When a number of peaks in the double Patterson 
function are identified, the corresponding triangles in 
the true structure may have interatomic vectors in 
common. By this partial overlap, the number of 
terms in the expression for the /3, values, (5), 
decreases. In other words, a collection of triangles 
from the double Patterson function must be 
assembled into some group of interatomic vectors in 
order to compute the ft ,  values with (5). It is not yet 
clear how this assembling of triangles of atoms into 
partially overlapping triangles can be done. It 
is expected that for this higher Patterson functions 
and higher multiplets are needed. Also, the single 
Patterson function may serve as an indication for 
this partial overlap of triangles. 

Although the true double Patterson function fixes 
the enantiomorph, the approximated one, (11), does 
not do so. For this approximated double Patterson 
function, there are pairs of peaks (u,v) and ( - u , -  v). 
It may be assumed that by a choice of only one of 
the two peaks (and the other corresponding five 

peaks as mentioned above), the enantiomorph may 
be fixed by the first choice of the strongest non-origin 
peak. In the triplet expectation values computed by 
(8), this choice of enantiomorph will also yield triplet 
values in which the enantiomorph is fixed up to some 
accuracy; this also holds for the recomputed double 
Patterson function (10). From that moment on, of a 
pair of peaks (u,v) and ( - u , -  v), one will be larger 
than the other and the largest peak is, of course, to 
be preferred. In this way, by choice of the first 
strongest peak, the enantiomorph ambiguity may be 
solved. 

The problems mentioned make application of the 
formulae presented to standard structure-solution 
methods difficult. Higher-order Patterson functions 
(Giacovazzo, 1980; Vaughan, 1958) may also be 
considered in order to solve these problems. 

The author thanks Dr R. Peschar for many useful 
discussions. 
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Abstract 

A method is proposed to correct for the dynamical 
electron diffraction effect in crystal structure analy- 
sis. A rough structure model is first obtained by 
conventional structure-analysis methods neglecting 
the dynamical diffraction effect. From the rough 
structure model, multislice calculations are used to 
estimate the crystal thickness through the observed 

© 1993 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

dynamical diffraction wave amplitudes. With this 
estimated thickness, the observed diffraction wave 
amplitudes are calibrated to give a set of fictitious 
observed kinematic structure-factor magnitudes. 
Based on such a set of magnitudes, a traditional 
least-squares procedure is used to refine structural 
parameters. The reliability of the result is checked by 
the consistency between the observed dynamical 
diffraction wave amplitudes and those found from 
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